B. Sc. Sem: 5 USO5CPHY22 Unit: 4 Numerical Techniques

1. Introduction:

During experimental work, we take observations involving two variables as: pressure and
temperature, load and deflection, voltage and current etc. and we want to establish relation
between these variables.

The problem of finding an equation of an approximating curve, which passes through as many
points as possible is called curve fitting.

The method of group averages, the least square method, the method of moments etc. are some
methods. Out of all methods, the least square method gives a unique best fit and is highly
recommended.

1.1. The Least Square Method:

In curve fitting, for a given data, this method gives the best fit, with prior knowledge of the shape
of the curve.

Suppose we have (x1,v1), (x3,¥2) .... (xn, yn) be n set of observations in any experiment.

Let us assume that

y=fx) @O
is a relationship between x and y.

When x = x;, the observed value of y is y; and the expected or calculated value of y using
equation (1) is f(x;). Which may be slightly differ from y,. Then the residual is defined as:

er=y1—f(x) (2)

Similarly, all other residuals e,, 5 ... e,, defined as:

e =y, —f(x2),e3=y3— f(x3) . e =y — f(xn) (3)

Here some residuals may be positive, some may be negative and some may be zero. In order to
give equal importance to both positive and negative residuals, we consider the sum of the
squares of residuals (rather than sum of residuals as in the method of group averages). Therefore

E=ef+ei+ ..+ef=[y— )P+ [y = fOx)PP 4+ [yn — fFOD]* (4)

Here the quantity E is a measure of how well the curve y = f(x) fits the given data
(observations).

Therefore E will be zero if and only if all points of observations lie on the curve given by equation
(1). The value of E decreases depending on the closeness of the observed data to the curved
assumed. Hence “the best representative curve to the given set of the observed data or
observations is one for which E, the sum of the squares of the residuals, is minimum”. This
concept is known as the principle of least squares. In general, we consider straight line,
parabola or an exponential curve for fitting the data.
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1.2. Fitting a straight line:

Suppose (x1,y1), (x3,¥2) ... (xn, ) be a set of n observations in any experiment and we wish to
fit a straight line to these observations, which is represented as:

y=ax+b (5)
i.e. we have to determine constants a and b, using the principle of least squares.

For any x; (i =1,2,..n), the expected value (computed value) of y is ax; + b, while the
observed value of y is y;.

Hence the residuals are:
e; = observed value — expected or calculated value
e =y;— (ax;+b) fori=1,2,..n (6)
The squares: e? = [y; — (ax; + b)]?,

and the sum of the squares of residuals is given as:

n

E=) li=(ax+hP ()

i=1
where E is a function of parameters a and b. The necessary condition for E to be minimum gives:

J0E OE

6a=%:0 ®)

The first condition of equation (8) Z—i = 0, using equation (3) gives

0E 0

92" 9a =0

> b= (axi + DI
i=1

L1

21 ) [yi — (ax; + b)] (—xi)] =0
=1

X[xiyi — (ax? + bxi)]] =0
=1

leyi —ainz —ble =
i=1 i=1 i=1
n n n
alez + bei = le-yi (9
i=1 i=1 i=1
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Similarly the second term of equation (8) g—i = 0, using equation (3) gives

- %[i[yi ~(ax + D) | =
i=1
2 [zn:[}ﬁ — (ax; + b)] (—1)] =
i=1
i=1 i=1

M:

Il
Ju

i

As

—_
Il
S

.~
Il
iy

n

n
ain +bn = Zyi (10)
i=1

i=1
Equations (9) and (10) are called normal equations.

To compute E, equation (7) is written as

E= ) [yi—(ax;+b)]*= » [y; —ax; — b]?
2 2

E= Z:[yl2 + a?x?+b% — 2ax;y; + 2abx; — 2by;]

i=1

By rearranging the terms

n
E= Z[yiz—Zaxiyi — 2by; + (a®x? + 2abx; + b?)]
i=1
n
E= Z[Yiz—axi%' — by;—ax;y; — by; + (ax; + b)?]
i=1
n n n n
E= Z}’LZ - azxiYi - bZYi _z(axi +b)[y; — (ax; + b)]
i=1 i=1 i=1 i=1
As y; — (ax; + b) = 0, the last term of above equation becomes zero
n n n
CE=Yyi-a) xyi—by y (D
i=1 i=1 i=1
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Example: 1

Using the method of least squares, find the straight line y = ax + b that fits the following data.

x 0.5 1.0 1.5 2.0 2.5 3.0
y 15 17 19 14 10 7
Solution: the normal equations of least square fitting that fits a straight line y = ax + b are:

n n
ainz + bel- = Exiyi . (1)
i=1 i=1

S

i=1

n n
ain +bn = Zyi - (2)
1 i=1

i=

x y xy x

0.5 15 75 0.25

1.0 17 17.0 1.00

15 19 28.5 2.25

2.0 14 28.0 4.00

25 10 25.0 6.25

3.0 7 21.0 9.00
in =105 Zyi = 82 inyi =127 inz = 22.75

The normal equations (1) and (2) becomes
22.75a + 10.5b =127 ..(3)
10.5a + 6b =82 ...(4)

From equation (4)

82 — 10.5a

b=——r— ..(5)

Submit value of equation (5) in equation (3), it becomes ...

22.75a + 10.5

82 —10.5a
(21050,

22.75a + 143.5 — 18.375a = 127
4375a = —16.5 ~a=—3.7714 ..(6)

Now submit value of equation (6) in equation (5), we have

. 82 — 10.5(—3.7714)
B 6

& b=202667 ..(7)

Therefore, equation of line y = ax + b now becomes y = —3.7714x + 20.2667
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Example: 2 Applying the method of least square find an equation of the form y = ax + bx? that
fits the following data.

x 1 2 3 4 5 6
y 2.6 5.4 8.7 12.1 16.0 20.2
Solution: The required curve that fits the given data is y = ax + bx?, which can be written as

% = a + bx and by takingY = %it becomes Y = a + bx. We can rewrite the data of given table

for new variable Y = %

X 1 2 3 4 5 6
Y 2.6 2.7 2.9 3.025 3.2 3.367

The corresponding normal equations become:

b)) x}+a) x; = le-Yi . (1)

n n n
i=1 i=1 i=1

n n
bei +an = ZYi . (2)
i=1 i=1

From modified data table, we have

X Y xY x?
1 2.6 2.6 1
2 2.7 5.4 4
3 2.9 8.7 9
4 3.025 12.1 16
5 3.2 16.0 25
6 3.367 20.2 36
le-=21 ZYi=17.792 inYi=65.0 Zx3=91

Equation (1) and (2) becomes: 91b + 21a = 65 ... (3) 21b+ 6a =17.792 ... (4)
From equation (4), we have a = %6_2”) .. (5)
By substituting value of equation (5) in equation (3) we obtain...

91b + 21 (@) =65 ~91b + 62.272 — 73.5b = 65 ~17.5b = 2.728

b = 0.15589 ... (6)

_17.792-21(0.15589)
- 6

Equation (5) becomes... a = 2.41973 ~a=241973 ... (7)
Y = a+ bx becomesY = 2.41973 + 0.15589x ... (8)

AsY = %, equation (8) is finally written as y = 2.41973x + 0.15589x2
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Example: 3 Using the method of least squares, find an equation of the form: y = ax + b, that fits
the following data. Also, calculate the sum of the squares of the residuals E.

x 0 1 2 3 4
y 1 5 10 22 38
Solution: the normal equations of least square fitting that fits a straight line y = ax + b are:

n n n n n
ain2+bei=inyi (1), ain+bn=Zyi . (2)

i=1 i=1 i=1 i=1 i=1

x y xy x?

0 1 0 0

1 5 5 1

2 10 20 4

3 22 66 9

4 38 152 16
in=10 Zyi=76 inyi=243 in2=30

The normal equations (1) and (2) becomes
30a +10b = 243 ..(3)

10a + 5b = 76 ... (4)

From equation (4)

76 —10a

— ()

Submit value of equation (5) in equation (3), it becomes ...

76 — 10a
5

30a + 152 — 20a = 243, & 10a =91

30a + 10( ) = 243,

~a=91 ..(6)
Now submit value of equation (6) in equation (5), we have

76 —10(9.1)
b=———,
5
Therefore, equation of line y = ax + b finally becomes y = 9.1x — 3

Example: 4 Using the method of least squares, find an equation of the form: y = ax + b, that fits
the following data.

Dr. P. S. Vyas, Physics Department, VP & RPTP Science College 6



B. Sc. Sem: 5 USO5CPHY22 Unit: 4 Numerical Techniques
1.3. Fitting a parabola:

Suppose we have a set of ‘n’ observations (x;,y;),i = 1,2, ...n in any experiment and we wish to
fit a parabola to the observed data using least square method.

Let
y=ax’+bx+c (1)
be the equation of parabola that fits the given data. We want to determine constants a, b, c.

For a given x;, let the expected value of y is given by ax? + bx; + ¢, while the observed value is
¥;. Then the residual e; in the ith value is given by

e; = observed value — expected or calculated value
e, =y;— (ax? + bx; +¢) (2)
Summation of all n residual squares gives
n n
E = Z el = Z[J’i —(axf +bx; +))*  (3)
i=1 i=1
where E is a function of parameters a, b, c. The necessary condition for E to be minimum gives:

aE_aE_aE_O .
da b dc )

d 3 2 2
%Z[yi — (ax; +bx;+¢c)]*=0
i=1

£ 2 ) [y = (@ + bxi + (=) = 0
i=1

By expansion of summation and rearranging the terms we obtain...
- ) .
Slmllarlyﬂ = ( gives...

9E .
and — = 0 gives...
ac &
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n

n n
ainz +b2xi2 +cn:le-yi @)
1 i=1

i= i=1

Equations (5), (6) and (7) are called normal equations for parabola and we find out constants
a, b, c by solving them. Equation (3) becomes:

n

n n n
E=ZJ’i2—ain2}’i—bzxm—CZ}’i (8)
' 1 =1 =1

i=1 i=

Example: 5 Fit a parabola to the following data using the method of least squares.

X 1.0 1.2 1.4 1.6 1.8 2.0
y 0.98 1.40 1.86 2.55 2.28 3.20

Solution: Let the equation of the curve of parabolic fit is

y=ax?+bx+c..(1)

Corresponding normal equations are

i=1 =1 i=1 =1
n n n
a2x12+b2xi2+cn=2xiyi (4)
i=1 i=1 =1
x y x? x3 x* xy x%y
1.0 0.98 1.00 1.000 1.0000 0.980 0.9800
1.2 1.40 1.44 1.728 2.0736 1.680 2.0160
1.4 1.86 1.96 2.744 3.8416 2.604 3.6456
1.6 2.55 2.56 4.096 6.5536 4.080 6.5280
1.8 2.28 3.24 5.832 10.4976 4.104 7.3872
2.0 3.20 4.00 8.000 16.0000 6.400 12.8000
6 6 6 6 6 6 6
Z Xi Z Yi Z x? Z x; Z x;t Z XiYi Z X7y
i=1 i=1 i=1 i=1 i=1 i=1 i=1
=9 = 12.27 = 14.20 =234 = 39.9664 | =19.848 | = 33.3568

Equations (2), (3), (4) become
39.9664a + 23.4b + 14.2c = 33.3568 ... (5)
23.4a + 14.2b + 9.0c = 19.848 ... (6)

14.2a 4+ 9.0b + 6¢ = 12.27 ... (7)

Dr. P. S. Vyas, Physics Department, VP & RPTP Science College 8



B. Sc. Sem: 5 USO5CPHY22 Unit: 4 Numerical Techniques
Multiply equation (6) with 9 and equation (7) with 14.2, by subtracting the results

8.96a — 4.2c = 4.398

4398+ 4.2¢

Multiply equation (6) with 23.4 and equation (5) with 14.2, by subtracting the results
8.96a + 12.6c = 5.2764

_ 5.2764 — 12.6¢
B 8.96

. (9)

Substituting values of equation (8) and (9) in equation (5), we obtain

4.398 + 4.20) (5.2764 —12.6¢

39'9664( 8.96 8.96

) + 14.2c = 33.3568

¢ = —1.4464 or (—1.4471) ... (10)
a=-0.1875... (11)
b =2.6239.. (12)
Equation (1) becomes ...y = —0.1875x% + 2.6239x — 1.4471
Which is required equation.
b

1.4. Fitting a curve of the formy = ax

Suppose we have a set of ‘n’ observations (x;,y;),i = 1,2, ...n in any experiment and we wish to
fit a curve of type y = ax” to the observed data using least square method. Given that

y=ax" (1)

To linearize it take logarithms on both sides of y = ax?

logoy = logioa + b -logsox (2)
Letlog,oy =Y, logipa = A, logiopx =X (3)
Therefore equation (2) now becomes ...Y = A+ bX (4)
Which is required equation, linear in Y and X.

Example: 6 Using the method of least squares, find a relation of the form y = ax? that fits the
given data.

X 2 3 4 5
y 27.8 62.1 110 161

Solution: Let the equation fits is
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y=ax?..(1)

After linearize with log,,y =Y, logipa = A,log,9x = X, it becomes
Y=A4A+bX..(2)

Therefore, data in Table 1 is now modified and written in terms of X = log,ox,Y = log oYy

X 0.3010 0.4771 0.6021 0.6990
Y 1.4440 1.7930 2.0414 2.2068

Corresponding normal equations are

n n n n n
bZXi2+AZXi=ZXL-Yi - (3), bZXi+An=ZYi ()
i=1 i=1 i=1 i=1 i=1

X Y XY X?
0.3010 1.4440 0.4346 0.0906
0.4771 1.7931 0.8555 0.2276
0.6021 2.0414 1.2291 0.3625
0.6990 2.2068 1.5426 0.4886

in = 2.0792 Z Y; = 7.4853 in Y; = 4.0618 ZXE =1.1693

Equations (3) and (4) become ...
1.1693b + 2.07924 = 4.0618 ... (5), 2.0792b + 4A = 7.4853 ... (6)
Which give b = 1.9311 and A = 0.8678
as A = log,0a,a = antilog (A) = antilog(0.8678) = 7.375
19311

and the finally equation (1) y = ax” becomes y = 7.375x

Example: 7 Using the method of least squares, find a relation of the form y = ax? that fits the
given data.

y 0.5 2.0 4.5 8.0 12.5

1.5. Fitting an exponential curve y = ae’*:

Suppose we have a set of ‘n’ observations (x;,y;),i = 1, 2, ...n in any experiment and we wish to
fit an exponential curve of the form y = ae’* to the observed data using least square method.
Given that

y=ae® (1)

To linearize it take logarithms on both sides of y = ae?*
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log,oy = log,pa + bx - logige (2)
Letlog,0y =Y, logipa = A, blog;pe =B (3)
Therefore equation (2) now becomes ...
Y=A+BxorY=Bx+A (4)
Which is required equation, linear in Y and X.

Example 6 Using the least square, fit an equation of the form y = ae?* to the given data.

b 1 2 3 4
y 1.65 2.70 4.50 7.35
Let
y = aeb* ... (1)

logi10y = logipa + bx - log,ge ... (2)
logioy =Y, log,pa = A, blogipe =B ... (3)
Therefore equation (2) now becomes ...
Y=A+Bx or Y=Bx+A..(4)

The normalized equations are:

n n n
B x*+A) x;= le-Yi ..(5),
i=1 i=1 i=1
n n
Bzxi + An = ZYi ..(6)
i=1 i=1
x y Y = logi0y x? xY
1 1.65 0.2175 1 0.2175
2 2.70 0.4314 4 0.8628
3 4.50 0.6532 9 1.9596
4 7.35 0.8663 16 3.4652
in =10 Z Y, = 2.1684 inz =30 in Y, = 6.5051

Equations (5) and (6) become...
30B + 104 = 6.5051, 10B +4A = 2.1684

B =0.2168,4A =0, b=04992,a=1

0.4992

Equation (1) y = ae®® becomesy = e , Which is required equation.
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Example: 8 Using the least square method, find a relation of the form y = ae?* that fits the given
data.

77 100 185 239 285
y 2.4 3.4 7.0 11.1 19.6

Example: 9 Using the least square method, find a relation of the form y = ae?* that fits the given
data.

y 0.6 1.9 4.3 7.6 12.6

2. Interpolation:

For a function y = f(x), for a given table of values (xy,yx),k =1,2,..n, the process of
estimating the value of y, for any intermediate value of x is called interpolation. The method of
computing the value of y, for a given value of x, lying outside the table of values of x is known as
extrapolation.

To compute trajectory of a rocket flight, we have to solve the Euler’s dynamical equations of
motion to compute its position and velocity vectors at specified times during the flight. To find
out position and velocity vector at some intermediate times, interpolation technique is used.

2.1. Finite Difference Operators:
2.2. Forward Differences:

For a given table of values (x,yx), k =1,2,..n, with equally-spaced intervals on X-axis
(abscissas) of a function y = f(x). The forward difference operator A is defined as ...

Ay, =vyii1—y; 1=012,.n—1 (1)
Ayo=y1—Yoo Ayi=Y2=Y1, BYn1=Yn—Yn-1 (2)

These differences are called first differences of function y, are denoted by symbol Ay;. Here A is
called forward difference operator.

The differences of first differences are called 2nd differences (A?), defined as
Ay, = Ay, — Ay,
A%y; = Ay, — Ay,

In general...
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A’y; = Ay, —Ay; i=0,1,2,.n—1 (3)

Similarly
Ay = A"ty — ATy,
X y Ay A’y Ay Aty
Xo Yo
Ay,
X1 Y1 AZJ’O
Ay, A33’0
X2 V2 Az}’1 A4}’0
Ay, A3Y1
X3 V3 AZJ’Z
Ays
X4 Va

2.2. Backward Differences:

For a given table of values (xy,yx), k =1,2,..n, with equally-spaced intervals on X-axis
(abscissas) of a function y = f(x).

The backward difference operator V is defined as ...
Vyi=yi—vyi-q i=nn-—1,..2,1 (1)
Vyi=y1=Yo V¥2=Y2=Yi Vyn=Yn—Vn-1 (2)

These differences are called first differences of function y, are denoted by symbol Vy;. Here V is
called backward difference operator.

The differences of first differences are called 2nd differences (V?), defined as
V2y1 =Vy1 = Vy,,

V2y, =Vy, = Vy

In general...
Viy;=Vy;—Vy,.; i=nn-—1,..2,1 (3)
Similarly
Py =V "ty =V y
Or

Vky, = 7k ly, — 7k 1y
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x y vy vy vy vty
X0 Yo
Vy
X1 V1 7%y,
Vy, 73y,
X2 V2 V2y; V*y,
Vys 73y,
X3 V3 V2y,
Vys
X4 Va

2.3. Central Differences:

For a given table of values (xy,yx), k =1,2,..n, with equally-spaced intervals on X-axis
(abscissas) of a function y = f(x). The central difference operator 6 is defined as the average of
the subscripts of the two members of the difference.

812 =Y1=Y0,0¥32=Y2—¥1 (1
8Yi = Yira/2) — Yi-as2) (2)
Higher order differences are defined as..
52}’:’ = 5}’i+(1/2) - 8yi—(1/2) 3)
8y = 5n_1}’i+(1/2) =8 yi_(1y2) (4)
2.4. Shift Operator: E

Let y = f(x) be a function of x, and let x takes consecutive values as x,x + h,x + 2h, etc. the
shift operator E is defined as

Ef(x) =f(x+h) (1)
E*f(x) = E[Ef(x)] = E[f (x + B)] = f (x + 2h)
In general
E"f(x) = f(x + nh)
Or in terms of new notations y, = f(x) then

E™Yy = Yxinn

for all real values of n.
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If y,,v1, --- ¥, are the consecutive values of the function y,, then we can write

Eyo = y1,E*yo = ¥2,E3yg = ¥3, ... E*y, =y,

The inverse shift operator E~1 is defined as

E7'f(x) = f(x—h),E2f(x) = f(x — 2h), ... ET"f(x) = f(x —nh)
2.5. Average Operator u:

The average operator y is defined as

uf (x) = %[f (x + %) +f (x - g)] = %[yx+(h/2) + Vee(ny2)]

2.6. Differential Operator D:

The differential operator Df (x) is defined as

d
DFG) = —f(0) = f'(®)

D*f(x) = j—;f(x) = f"(x)
2.7. Relations between Operators:
(1) ShowthatA=E —1orE=A+1
Ayy = Yxen =Yx =Eyx —yx = (E-Dy, ~A=E—-lorE=A+1

(2) Show that V=

1 E-1
Vyy = Yx = Yx—n = Vx _E_IYx =1 _E_l)yx = (1 _E>yx = <—>yx

(3) Show that § = E1/2 — g~1/2

Sy, = Vx+(/2) — VYx—(h/2) = El/zyx - E_l/zyx = (El/z - E_l/z)Yx

"0 = E1/2 _ E—1/2

(4) Show that y = > [E/2 + E~1/2]
1 1 1/2 -1/2 1 1/2 -1/2
Wy = [Verns) + Veemy2)] = 5 [EY2y, + E"Y2y,| = > [EY% + E~Y/2]y,

1
.y = 2 [F1/2 -1/2
sp=s [EY/2 + E~Y/2]
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(5) Show that hD = log E

We have Ey, = y,on = f(x + h)

Using Taylor series expansion we have ...
hZ
Eyy =Ef() = O +hf'(0) + 5 f7 () + -~

2
= f(x) + hDf (x) +%sz(x) + .

[, hD h?D?
ol TR

o £ GO

= e"Pf(x)

~ F = ehD
By taking log on both sides

hD =logE
(6) Show that hD =log(1+ A) = —log(1 —-V)
AsA=E-1, E=A+1

hD =logE = log(1 + A)
We know thatlogx = —logx™*andV=1—E !, wehave E'=1-V
o~ hD =logE = —logE™1 =log(1 —V)

2.8. Newton’s Forward Difference Interpolation Formula:

Let y = f(x) be a function which takes values f(x,), f (xq + h), f (xq + 2h) ... corresponding to
various equispaced values of x: with spacing h, say xy, xq + h,xy + 2h ...

Suppose we wish to evaluate f(x) for a value x, + ph,

where p is any real number [as X =xg+ph p= x_hxo] .

From definition of shift operator E,
EPf(x) = f(x + ph)
AsE =1+A, EP = (1+A)P
“ f(xo + ph) = EPf(x0) = (1 + AP f(x0)

p(pzj 1) A% 4 p(p — ls)!(p —2) A3

=1+ pA+ + o | f(x0)
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" Flro 4 ph) = £ ) + p0f o) + B D n gy + PR DO B g
ot plp—1) n('p —nt D A™f (xo) + Error
In terms of y = f(x) it is written as
Yx = Yo+ pAyo + p(pZT ) Ay, + WP% et P -1 n('P —nt+ 1) A"y, + Error

This formula is known as Newton Gregory forward difference formula for interpolation or
simply Newton’s forward difference formula for interpolation, which gives value of f (x, + ph)
in terms of f(xy) and its leading differences. Or y, in terms of y,. This forward difference
interpolation formula is mainly used to interpolating the values of y near the beginning of a set
of tabular values and for extrapolating values of y, a short distance backward from yj.

Example: 10 Evaluate f(15) from the given data table.

X 10 20 30 40 50
y=fx) 46 66 81 93 101
x y Ay A%y A3y Aty
10 46
20
20 66 -5
15 2
30 81 -3 -3
12 -1
40 93 -4
8
50 101

p(p—1) pp—1D(p-2) pp—D(@-2)(p—-3)
S Ve = Yo + PAy, + TAzyo + 30 Ay, + 2 Aty

Xog = 10,y0 = 4‘6, Ayo = 20, Azyo = —5, A3y0 = 2, A4y0 = -3

We want to evaluate y, for x = 15.(i.e.y;5). Ash =10,p = x_hxo = 151_010 = 15—0 =0.5
0.5(—0.5) 0.5(—0.5)(—1.5) 0.5(—0.5)(=1.5)(—2.5)
yis = 46 +05(20) + ————— (=5) + = ) + . (=3)

S Y15 =46 + 10 + 0.625 + 0.125 + 0.1172

yi5 = f(15) = 56.8672
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Example: 11 Find Newton’s forward difference interpolating polynomial for the following data.
Estimate f(0.15).

x 0.1 0.2 0.3 0.4 0.5
y=f(x) 1.40 1.56 1.76 2.00 2.28
Y = Yo+ pAy, + p(pz—Tl)AzyO
x—0.1

xo = 0.1, y, = 1.40, Ay, =0.16, A%y, = 0.04, p = =10x—1

0.1
y=2x*+x+1.28

Forx = 0.15,y = 1.475
Theorem:
Differences of a polynomial:

The n*" differences of a polynomial of degree n is constant, when the values of the independent
variable are given at equal intervals.

Fory, = apx™ + a;x™ 1 + a,x™ 2 + .- + a,_1x + a,, , where ay # 0,a,, ay, ..., a, are constants,
then

A"y, = ap(n!)h™ = constant

An+1yx =0

Example: 12 Estimate the missing figure in the following table:

x 1 2 3 4 5
y = f(x) 2 5 7 - 32

Since we are given four entries in the table, the function y = f(x) can be represented by a
polynomial of degree three.

Using above theorem,
A3 f(x) = constant, A*f(x) =0
= A (xp) =0
AsA=E —1,A*= (E - 1D*&A*f(x9) = (E—1D* f(x) =0
(E* —4E3 + 6E*> —4E + 1)f(x,) =0

E4f(x0) —4 E3f(x0) + 6 Ezf(xo) —4Ef(xo) + f(x0) =0
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f(xg) = 4f (x3) + 6f(x2) = 4f (x1) + f(x0) =0
As f(x0) = 2,f(x1) = 5,f(x2) =7, f (x4) = 32
32 —4f(x3) + (6 X7) —(4x5)+2=0

~56—-4f(x3) =0
fx3) =14
Example: 13 Evaluate f(9) and f(18) from the given data table.
X 10 20 30 40 50
y=f(x) 46 66 81 93 101

Yo = 43.5585,y,3 = 62.5168

Example: 14 The following table gives pressure of a steam at a given temperature. Using
Newton'’s formula, compute the pressure for a temperature of 142°C, 155°C.

Temperature °C 140 150 160 170 180
Pressure kgf /cm? 3.685 4.854 6.302 8.076 10.225

For t = 142°C, Pressure: P = 3.8987 kgf /cm? and t = 155°C, Pressure: P = 5.540 kgf /cm?
2.9. Newton’s Backward Difference Interpolation Formula:

To evaluate or interpolate the value of the function y = f(x) near the end of table of values or to
extrapolate value of the function a short distance forward from y,, Newton’s backward
difference interpolation formula is used.

Let y = f(x) be a function, which takes values f(x,), f(x, — h), f(x, — 2h) ... f(x, — nh) =
f (xo) corresponding to equispaced values x,, x,, — h, x, — 2h, ... x, — nh = x,.

Suppose we wish to calculate f(x) at x,, + ph, where p is any real number.

X—Xn]

[asx=xn+ph, p= n

By using shift operator E,

fOn +ph) = EPf(xn) = (ET)7Pf(xn) = (1 = V) 7Pf(xp)

Using Binomial expansion, we have

p(p+1) 72 +p(p + D +2) 73

~f(xp+ph)=|1+pV + T 3] + o [ ()
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1 1 2
o +ph) = £ ) 4 p7F i) + PE D g2 4 LPE 0T D gy o
f2O3D =PI D gn ) 4 Brror

In terms of y = f(x) it is written as

pp+D ,  p+DO+2) Pt D ptn-1)

“ Ve = Y PVt —— Yn 30 V3yn + . Yn
+ Error
Example: 15 Evaluate f(45), f(52) from the given data table.
x 10 20 30 40 50
y=f(x) 46 66 81 93 101
x y vy vy 7y vty
10 46
20
20 66 -5
15 2
30 81 -3 -3
12 -1
40 93 -4
8
50 101
p(p+1) plp+ D +2) plp+D+2)(p+3)
“ Ve = Va + PVt oV + 30 Vy, + 2 VY,
x4 = 50,y, = 101,Vy, = 8,V%y, = —4,V3y, = —1,V*y, = -3
We want to evaluate y, for x = 45.(i.e. y;5).
Ash=10p=2=2___2_-_95
h 10 10
—0.5)(0.5 —0.5)(0.5)(1.5 —0.5)(0.5)(1.5)(2.5
Yas = 101 + (—0.5)(8) +( )( )(_4) +( )(0.5)( )(_1)+( )(0.5)(1.5)( )(_3)

2! 3! 41
“ Y45 = 101 — 4 4 0.5 + 0.0625 + 0.1172
YVas = f(45) = 97.6797

similarly

ys2, = f(52) = 101.8208
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Example: 16 for the following table of values estimate f(7.5).

X 1 2 3 4 5 6 7 8
y = f(x) 1 8 27 64 125 216 343 512
x y Vy viy 73y vty
1 1
7
2 8 12
19 6
3 27 18 0
37 6
4 64 24 0
61 6
5 125 30 0
91 6
6 216 36 0
127 6
7 343 42
169
8 512

AsV*y =0,V5y ... = 0.

p(p+1)
2!

p(p+D(p+2) 73

Y = Yn +0Vyn +

Forx =7.5,p = x_hx" - 7'51_8 = —0.5,

y, = 512,Vy, = Vyg = 169,V2y, = V2yg = 42,V3y, = V3y; =6

(~05)(05) . (Z05)(05)(LS)

Y75 =512 + (~0.5)(169) + —————(42) 5

(6)
y,5 = 512 — 84.5 — 5.25 — 0.375 = 421.875

y,5 = 421.875

Example: 17 Estimate f(0.36), f(0.45) using Newton’s backward difference interpolating
formula for the given data.

x 0.1 0.2 0.3 0.4 0.5
y=f(x) 140 1.56 1.76 2.00 2.28

Forx = 0.36,y = 1.8992 Forx = 0.45,y = 2.1350

Dr. P. S. Vyas, Physics Department, VP & RPTP Science College 21



B. Sc. Sem: 5 USO5CPHY22 Unit: 4 Numerical Techniques

Example: 18 The following table gives pressure of a steam at a given temperature. Using
Newton’s backward formula, compute the pressure for a temperature of 175°C, 183°C.

Temperature °C 140 150 160 170 180
Pressure kgf /cm?  3.685 4.854 6.302 8.076 10.225
For t = 175°C, Pressure: P = 9.1005 kgf /cm?,t = 183°C, Pressure: P = 10.9504 kgf /cm?

Example: 19 Evaluate f(4.8) from the following table:

X 1 2 3 4 5
y = f(x) 2 5 7 14 32
f(4.8) = 27.232

Example: 20 The sale in a particular department store for the last five years is given in the table.
Estimate the sale for the year 2015, 2017.

Year 2010 2012 2014 2016 2018
Sale (in lakhs) 40 43 48 52 57
Sale in 2015 is 50.1172 lakhs, Sale in 2017 is 54.0547 lakhs

2.10. Lagrange’s Interpolation Formula:

Newton’s interpolation formula can be used only when the values of the independent variable x
are equally spaced and the differences of y must ultimately become small. If the values of the
independent variable x are not given at equidistant intervals, then we have to use Lagrange’s
interpolating formula.

Let y = f(x) be a function which takes the values yq,y;,V3,...,¥, corresponding to
Xg, X1, X3, - , Xn. Since there are (n + 1) values of y corresponding to (n + 1) values of x, we can
represent the function f(x) by a polynomial of degree n. Suppose the polynomial is of the form

f(x) =Apx™ + Ax™ 1+ + 4, (1)
Or

y=fx)=ao(x—x) (x —x3) . (x =)+ a3 (x—=x0) (x—x2)... (x—2xp)
+ a, (x—xp) (x—x1) oo (x—2x,) +
+ an (x —x0) (x —x1) o (x —Xpq) (2)

Here, the coefficients a;, are so chosen as to satisfy above equation by the (n + 1) pairs (x;, ;).
~ X = Xy, equation (2) becomes
Yo = f(X0) = ag (%o — x1) (%o — x2) ... (xg — Xp)

Therefore,
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Yo
(X0 — x1) (X9 — X2) «.. (X0 — Xy)

a0=

Similarly,

Y1
(1 = x0) (1 — x3) o (X1 — xp)

a1:

Yi

4= (e = x1) (g = x2) e (6 — Xi—1) (X — Xj41) o (X3 — Xp)

In

an = (e — x0) (¢ — x2) oo (X — Xp_1)

(3)
Now substitute the values of ay, a4, ..., a,, into equation (2), we get
b oy = (E T G ) () G =) (6 =) v =)
(x0 — x1) (xg — x2) .. (30 — Xp) ° (1 = x0) (1 = x2) «o. (1 — Xp) !
4. (x = 2x1) (x = x2) e (X = 23-1) (X = Xj41) o (X — Xp)

;= 20) Ot — 22) o (o — Xi—1) (g — Xgag) o (=) O

(x = x0) (x —x1) v (X = Xp_1)
Tt ) et G P

Above equation is called Lagrange’s equation for interpolation. This formula can be used
whether the values x,, x4, X5, ... , X, are equally spaced or not.

Equation (4) can be also written as

y=f(x)=Li(x)yo + Li(X)ys + -+ Li(x)y; + -+ Lp(X)yn
= Z L ()Y
k=0

LY== ) L@ ()
k=0

Where,

(x —x1) (x —x2) o (0 = x3-1) (X — Xi31) o (X — 2p)
(i — x1) (g = x2) o (6 — Xi—q) (X — Xj41) o (X7 — %)

Li(x) = (6)

From equation (4) we can observe that
L;(x;) = 1and Li(xj) =0,fori#j

Thus we introduce Kronecker delta notation as
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—
Li(xj)=5i1={0, i;iij ™)

Further if we introduce a notation

[[@=]]e-m=c-we-m.c-x ®
i=0

[1(x) is a product of (n + 1) factors. It’s derivative []'(x) contains sum of (n + 1) terms in each
of which one of the factor of [[(x) will be absent.

n'(x) =(x—x)(x—x3) . (x—xp)+ (x—x0) (x —x3) oo (x—2x,)+

+ (x — %) (x —x1) o (X —Xp—1)

We define

P =] -2 ©

izk
Which is same as [[(x) except that the factor (x — x;.) is absent. Then
[[®=P+P@++ R a0
But when x = x, all terms in the above sum vanishes except P (x; ). Hence,

IT'Ce) = Pre(xi) = (e — x0) e — 1) o Ot = 2g=1) O = Xpey1) oo (e — %) (11)
Using equations (9) and equation (11), equation (6) is written as (as i is replace with k)

P (x) _ P (x) _ [1(x)
Pe(xr)  T1'(x) (=2 [T'(x)

Therefore Lagrange’s interpolation polynomial of degree n can be written as

Le(x) = (12)

~ \ n l_l(x) ~ n ~ n
y() = f(x) = ;(x_ka,(x) fx0) = ;Lkm £ = kZOLk(x) v (13)

Example: 21 Find Lagrange’s interpolation polynomial fitting the points

y(1) =-3,y(3) =0,y(4) = 30,y(6) = 132. Hence find y(5).

X 1 3 4 6
y(x) = f(x) -3 0 30 132

Using Lagrange’s interpolation formula, we have
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y(x) = f(x) = (x — x1) (x — x3) (x — x3) (x —x0) (x —x2) (x — x3)
(xo — x1) (X0 — x2) (xp — x3) 0 (x1 — x0) (x4 — x2) (%1 — X3) !
4 (x —x0) (x —x1) (x — x3) (x —x) (x —x1) (x — x3)
(xz —x0) (X2 — x1) (x — x3) g (x5 = x0) (x3 — x1) (x5 — x3) ¥
B _(x=3)(x—4)(x—6) x—1D(x—4)(x—-6)
YO =IO=05a-na-0 VT e-ne-sve-6 ©
(x—1) (x—3)(x—6) x—1D (x—-3)(x—4)
G-DE-30-6 " T E-DE-n6E-4
B x3 —13x%2 +54x — 72 (—3)+ x3 —11x% + 34x — 24 0 + x3 —10x% +27x — 18 (30)
B (—30) (6) (—6)
x3 —8x%+19x — 12
=0 (132)
_x3—13x2+54x—72 x3 —10x% 4+ 27x — 18 y x3 —8x% 4+ 19x — 12
- (10) ¥ 10 (g D) 9

1 1
= E(_SX3 + 135x2 — 460x + 300) = E(_X3 + 27x% — 92x + 60)
Which is the required Lagrange’s interpolation polynomial.
1 1 1
y(5) = 5 [—(5%) + 27(5%) — 92(5) + 60] = > [—125+ 675 — 460 + 60] = > [150] = 75

y(5)=75

Example: 22 Given the following data evaluate f(3) using Lagrange’s interpolating polynomial.

x 1 2 5
y=f(x) 1 4 10
Using Lagrange’s interpolation formula, we have
y = flx) = (x —x1) (x — x3) y (x — x0) (x — x3) y (x —x0) (x — x1) y
(x0 — x1) (X0 — x2) ° (1 — x0) (x1 — x2) ! (x2 — x0) (2 — x2) 2
_B=-2)(3-5) B3-1)(3-5) B-1)(3-2)
A e R R TR RN CRE VR R
f(3) = 6.4999

3.1. Numerical Differentiation:

Consider a function y = f(x) of a single variable x. If the function is known and simple, we can
easily obtain its derivative using some mathematical rule or analytical method.
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3, W _

= - = 3x2
y=x I X
dy
— p2x . — 92X
y=e I Ze
= sin5 dy—S 5
y=sin5x ——-=5c0s5x
dy
y=x"+4x dx 3x° + 8x

If we do not know the function or the function is complicated and it is given in a tabular form at
a set of points xg, x4, ..., X, we use only numerical methods for differentiation or integration of
the given function.

3.2. Differentiation using Difference operators:

We assume that the function y = f(x) is given for the values of the independent variable x =
Xo + ph,forp =0,1,2,...and so on.

3.3. Differentiation using Forward Difference Operators:
We know that hD =logE and E =1+ A (1)
Where D is a differential operator and E is a shift operator.
From equation (1), we have,

hD =log(1+A) (2)

2 3 4 5
we know that log(1 + x) = x — x? + x? - x: + x? —

A2 A3 At AS
hD =log(1+A) = A — — 4+ — — — 4 — —...
og(1+4) >t 3 Tt

1 A2 A3 At AS
sD=-(A-=4=-=4———)] 3

h 2 3 4 5
Therefore,
, 1 A% A3 At AP
Df(x0) = f'(x0) = E(A Y + 377 + 3 _"')f(xo)
1 A? A3 A AS
Df(xo) =f’(x0) — E [Af(xo) _ fz(xo) n f3(xo) _ fixo) n fs(xo) _]

B d
—af(xo)

Orin terms of y = f(x)
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dyo 1 Ay, Dy, A'y, | Ay,

Yo =7-=Y =% [ Yo >t 3 2 T (4)
Similarly

1 A2 A A% 1 11 5
D= —|A — — 4+ — — — :_[Az_A3 — A*— — A5 ] 5
h2< 2 73 4) n2 Y st ®

d2y, 1 11 5
2 — — o — 2 3 5
Dyo=Z77=% =13 [A Yo —A%yo + EA4y0_ e 3’0"‘"'] (6)

3.4. Differentiation using Backward Difference Operators:
We know that hD = —log(1—-V) (7)

On expansion, we have

VZ 3 V4-
D=—(V+—+—=—+—+-| (8
(+2+3+4+ )()

, 1 2w vt N 1 11,5
D:F V+7+—+—+"' =ﬁ<V+V+EV+gV+---) 9

dy, , 1 Vyn | Vyn, Vi
Dyn—a—yn —E<Vyn+ 2 + 3 + 4 + .- (10)

dzyn "

1 11 5
== [szn + ¥y, + — Vi, + =VPy, + ] (11)

D?y, =
Yn 12 6

Formulae (4), (6) are useful to calculate the first and second derivatives at the beginning of the
table of values in terms of forward differences; while formulae (10) & (11) are used to compute
the first and second derivative near the end points of the table, in terms of backward differences.

To compute the derivatives of tabular function at points not found in the table, we can proceed
as follows:

1
Yt +ph) = (i) + PPy + PE D gy +

N p(p + 1)(p44'r 2)(p +3) -

p(p+ 1 +2) 73
3!

y(xpn)

y(n) +- (12)

or

2
(p—+p) sz(xn) +

y(x, + ph) = y(x,) + pVy(x,) + 5
p* + 6p3 + 11p? + 6p)

24

(p* + 3p* + 2p)
6

V3y(xn)

L

Py () +- (12)
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Letx = x, + ph, then p = (x — x,,) /h. Now differentiating equation (12) with respect to x, we
get

, dydp 1 2p+1 3p% +6p + 2 4p% +18p2 +22p+6
“pdx h|7" > 2y, + S — iy, + o Vi, + | (13)
Where 2 = 1
dx h
. dzy 1 6p% + 18p + 11
dx2 ( )dx [szn + (p + 1)V3yn 12 V4yn + ] (14)

Equations (13) and (14) are Newton’s backward interpolation formula, which can be used to
compute the first and second derivatives of a tabular function near the end of the table.

Similar expressions of Newton’s forward interpolation formula can be derived to compute
derivatives near the beginning of the table of values.

Example: 23 Compute f''(0) and f'(0.2) from the following tabular data.

X 0.0 0.2 0.4 0.6 0.8 1.0
f(x) 1.00 1.16 3.56 1396 4196 101.00

Since x = 0 and x = 0.2 appear at and near beginning of the table, it is appropriate to use
forward difference formula to find the derivatives.

The forward difference table

x 15 MG | N0 | N | A | AF®
0.0 1.00
0.16
0.2 1.16 2.24
2.40 5.76
0.4 3.56 8.00 3.84
10.40 9.60 0.00
0.6 13.96 17.60 3.84
28.00 13.44
0.8 41.96 31.04
59.04
1.0 101.00
We have differentiation formula using forward differences
2
D%y, = % = Y0 = 13 |A%0 — %0 + % Ay, — 2 ps Yo +
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Or for any x:

dzf (x)

D) = LD = 1) = o [0 — 4200 + 35 400 - 2 A% )

Here we have h = 0.2

for x = x, = 0, A2f(0) = 2.24, A3f(0) = 5.76, A*f(0) = 3.84, ASF(0) = 0.00

F1(0) = 5 [82 @ - 87 + 5 8% ©@ - 2 257 0)

| : 11 5 _
£(0) = OOE [2.24— 76+ 5 (384) - ¢ (0)] =0.0

forx = x, = 0.2, Af(0.2) = 2.40, A%f(0.2) = 8.00, A3£(0.2) = 9.60, A*f(0.2) = 3.84

1 A2 A3 A4
Df (x:) =f’(x1)=E[Af(x1)— Tl SO\ TN

(0.2) — 1 [240 8.00+9.60 3.84 33
f(')_o.z ' 2 3 4 |7

Example: 24 find y'(2.2) and y"(2.2) from the table

x 1.4 1.6 1.8 2.0 2.2
y(x) 4.0552 49530 6.0496 7.3891  9.0250

Here 2.2 occurs at the end of the table, it is appropriate to use backward difference formula for

derivatives.
The backward difference table:
X y(x) Vy vy vy vty
1.4 4.0552
0.8978
1.6 49530 0.1988
1.0966 0.0441
1.8 6.0496 0.2429 0.0094
1.3395 0.0535
2.0 7.3891 0.2964
1.6359
2.2 9.0250
Here h=0.2, for x=ux,=x,=22,Vy,=1.6359,V?y, =0.2964,V3y, = 0.0535,V*y, =
0.0094

Dr. P. S. Vyas, Physics Department, VP & RPTP Science College




B. Sc. Sem: 5 USO5CPHY22 Unit: 4 Numerical Techniques

dy, , 1 Vy, iy, Vi,
Dyn_a_yn_ﬁ(vyn'k 2 + 3 + 4 +

, 1 VZy,  Vy, Vi,
DY4:)’4:E(V)’4+ 2 + 3 + 4

0.2964 4 0.0535 4 0.0094
2 3 4

1
Vi = 5 (1.6359 + ) = 5(1.8043) = 9.0215

D2y = il = — V2, + Viyy + = v
Ya= Vs W2 YVa YVa 12 Va

" o__ 1
Y4 = 10.2)2

11
[0.2964 + 0.0535 + 2 (0.0094)] = 25(0.3585) = 8.9629

3.5. Numerical Integration:

Consider the definite integral
I = f f(x)dx (1)
xX=a

Where f(x) is known either explicitly or is given as a table of values corresponding to some
values of x. Here we assume that the function is smooth and integrable in the given interval.

3.6. Newton-Cotes integration formula:

Newton-Cotes integration formula based on interpolation is used to form basis for trapezoidal
rule and Simpson’s rule of numerical integration. Here we shall approximate the given tabulated
function, by a polynomial P, (x) and then integrate this polynomial.

Suppose we have given data (x;,y;),i = 0, 1, ...,n at equispaced points with spacing h = x;,, —
Xi.

Suppose we use Lagrangian approximation to represent the polynomial then we have

f6) = ) L@ y@@) @
With associated error given by

B = ol ) 3)

Where

[1(x)
(x — x,0) [T" ()

With [T(x) = (x — xo) (x —x1) ... (x —x,) (5)

Li(x) = 4)

and [T'(xx) = (g — x0) (e — %1) oo (X — X—1) (X — Xpy1) - (X — X)) (6)
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Then, we obtain an equivalent integration formula to define integral of equation (1) in the form

[[rwar= [ Fuerw]a= Y[ wwadyem = Y aom

- fxb:af(x) dx = Z e y(x) (7)

Where c;, are the weighting coefficients given by

b
Cx = f_ Li,(x)dx (8)

These ¢, are called Cotes numbers. The equispaced nodes are defined by the limits:

Xp,—%X9 b—a
Xy = a, Xnp = Db, h = = X = X9+ kh (9)

From equation (9),
X — Xo = kh, x, —x; = (k—1)h, X —xp = (k—n)h (10)
Now we change variable from x to p such that
X =Xx9+ph (11)

X — Xy = ph, x—x;=@(@—-1)h, x—x,=(p—2)h, x—xp,=@(@-n)h (12)

Therefore equation (5) becomes
[[0=G-2) =2 c-x)=phe-Dh.G-mh

ﬂ(x) ="y (p—1).. (p—n) (13)
and

[1(x)
(x = x) [T"(xx)

(x —x0) (x —x1) oo (x = 1) (¢ — 23) (¢ — Xpyq) o (X — X))
(x = xp) [Cex = x0) (e — x1) oo (g — Xg—1) (X — Xper1) -+ (i — X))

Ly(x) =

v L(x) =
__ emx) emx) s (= X)) (6 — Xggg) o (X — %)
(ke — x0) (e — x1) v (g = Xp—1) (e — Xpeg1) o (X — X))

_ ph(p — Dh.. (p — (k- 1))h (p —(k+ 1))h w(p—n)h
" kh(k—Dh..(k— (= 1D)h(k—(k+1D)h..(k—n)h
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_pp-D.p-k+D)(p-k-1)..(p —n)
T kk-1D..k—-k+1D)(k—k-1)..(k—n)

_pP@-D.p-k+t)p-k-1)..p—n)
k(k—1)..(1) (-1) ...(k —n)

(Here in denominator: (—1) (=2) ..(k—n) = (-D1(-D2..(-D(n—-k) = (1) *(n-k)!)

D.p—-k+Dp-k-1)..(p—n)

ey P (P~

(14)

As x = xy + ph, by taking derivative dx = h dp

Now substitute value of equation (14) in to equation (8) and by changing limits from 0 to n, it

becomes
b n D p-k+D@—-k-1)..(p—
¢ = f L) dx = f (oo 22D k!(n)_(i)! )@=y o
(_1)(n—k)h n
Cszf pp—-1D.p-k+D(P-k-1..(p—n)dp (15)

Note: to calculate ¢, skip (p — k) term in integration of equation (15)

The error in approximating integral given by equation (7) can be obtained by substituting
equation (13) in equation (3), we have

hn+2 n
Bo= gy |, PO D0 -m Y @ dp (16)
Wherex, < & < xj,.
Case: 1 Forn = 1, (possible values of k = 0,1)
(i) Forn=1,k=0
Skip p — k in equation (15) i.e. skipp — k = p — 0 = p in calculations.

Integrand:p(p—1)..(p—k+1) (p—k—1)..(p —n), becomes (p — 1) forn = 1.

1=k p
ck=(k!(31—_k)!fo p@-D.p—k+D@P-k—-1..(p—n)dp
Becomes
(_1)(1—0) h 1
Co=mfo (p—1Ddp
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Co = 1(11))hf (p—1)dp= —h [—— p] = —h [__1] —h [_% _

h
Co = 2 17)

(i) Forn=1k=1
Skip p — k in equation (15) i.e. skip p — k = p — 1 in calculations.

Integrand:p(p — 1) ..(p —k+1) (p—k—1)..(p —n), becomes p forn = 1.

B (_1)(n—k) h
Ck_mf pp—-D.p—-k+D(@-k-1..p—n)dp
Becomes
(_1)(1—1) h 1
T - fo pap
ROTNE A N
-mf pdp = hHO— wl3)= 3
h
€ = E (18)
Equation (16)
B hn+2 n (n+1)
Eo= gy PO D@yt @ dp (16)
Becomes

h1+2

1
B = 07D fo p(—-1)y*D (&) dp

h3 1
E, = Ty”(f)f p(p—1) dp

_h3 . 1 _h3 . p3 pzl_h3 ; 1 1
=5V ®] 0 -pdp= Gy (f)[?—7]0—7y ©-3

. 2—3 h3 . 1
-y (f)[ == (f)[—g
3
s E= -5 y" () (9)

Therefore equation (7) becomes

Dr. P. S. Vyas, Physics Department, VP & RPTP Science College 33



B. Sc. Sem: 5 USO5CPHY22 Unit: 4 Numerical Techniques

1

fxiaf(x) dx = Z cr y(xp) or f:lf(x) dx = Z e y(xx)

k=0

X1
f f(x)dx = cyyo+ c1y, +Error
Xo

h
Ascy=c, = 2

X1 h h3

[ feadr= 50+ v - 137" ® @0y

Xo

This equation represents the Trapezoidal rule in the interval [x,, x;] with the error term.
Geometrically it represents an area between the curve y = f(x) and the X — axis between
points x = xy (= a) & x = x; (= b). This area is approximated by the trapezium formed by the
curve replacing the curve with its secant line drawn between end points (xg, yo) and (x4, y1).

)7

P

_— y :_f(.'f)

(¥ 1) (X5, =)

(% 2) FQ:A\

Yo Yy Yo Vi L Vi

=i JX.-
U X.=da ‘Yi l.’_, .x‘\ . e X

Trapezoidal rule.

Case: 2 For n = 2, (possible values of k = 0,1, 2)
i) Forn=2,k=0
Skip p — k in equation (15) i.e. skipp —k = p — 0 = p in calculations.
Forn =2, integrand: p(p— 1) ...(p —k+ 1) (p—k —1)..(p —n), becomes (p — 1) (p — 2).

1B p n
Ck=(k!(31—_k)!fo pp—-1D.p—-k+D(P-k-1)..(p—n)dp
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Becomes
(-1
Co:mf (-1 (p—2)dp
-1 Zh 2 h 2 L 5 ; , 5
CO:(l(;) fo(p_l)(P—Z)dp=Efo (p2—3p+2)dp=5[%—%+2p]0

S =R ERLE

(21)
(i) Forn=2k=1
Skip p — k in equation (15) i.e. skip p — k = p — 1 in calculations.

Forn = 2 integrand:p(p — 1) ...(p —k+ 1) (p —k —1) ...(p — n), becomes p (p — 2).

-1 -k p
ck=(k!(31—_k)!fo pp—-D.p-k+D)(p@-k—-1)..(p—n)dp

Becomes

(-1)EDh
C1=mfo p(p —2)dp

P Y I B

_4h 22
€1 = 3 (22)
(iii) Forn=2,k =2
Skip p — k in equation (15) i.e. skip p — k = p — 2 in calculations.

Forn = 2integrand:p(p —1) ...(p —k+1) (p—k—1) ..(p —n), becomesp (p — 1).

1B p
ck=(k!(i—_k)!fop(p—1)...<p—k+1)(p—k—1)...(p—n)dp

Becomes

(-DE 2 h
EEICEN fo p(p—1dp

%
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(D) h (2 hip® p2° h[2® 221 h[8 4] h(8 h2
L Y S T T
2(D) J, 2|3 2|, 2|3 2] 213721723 213

(23)

C2:

Therefore equation (7) becomes forn = 2

2

fxiaf(x) dx = Z cr y(xx) or fxzf(x) dx = Z e y(x)

x k=0

X2
f f(x)dx= cyyo+ c1y, +cy,y, + Error
X0

X2 h
f(x)dx = 5 Vo + 4y1 +y2)

Xo

With error,

*2 h h>
[ readr= 3 o0+ 4y - 55y @ © @)
Xo

This is known as Simpson’s 1/3 rule. Geometrically, this equation represent the area between
the curve y = f(x), the X — axis and the ordinates at x = x, and x, after replacing the arc of

the curve between (x,, yo) and (x5, y,) by an arc of a quadratic polynomial as shown in the figure.
Thus Simpson’s1/3 rule is based on fitting three points with a quadratic.

I
4

/ y=1)
pd

Yo Y Y2

0 X,=a X 5 Ko Xy x;=b

; Simpson’s rule.
[ )
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Similarly for n = 3, equation (7) becomes

%3 3 35
fx)dx= —h o+ 3y1+ 3y, +y3) — —— vy (&) (25)
8 80
X0

This is known as Simpson’s 3/8 rule, which is based on fitting four points by a cubic.
3.7. The Trapezoidal Rule (composite Form):

The Newton-Cotes formula is based on approximating y = f(x) between (x,, yo) and (x4, y;) by
a straight line, thus forming a trapezium, is called Trapezoidal Rule.

To evaluate the definite integral

I = f f(x)dx (1)
xX=a
We divide the interval [a, b] into n sub-intervals, each of size h = (b — a)/n and denote the sub-

intervals by [xg, x1], [x1, X2], .-, [Xn_1, %], such that xo =a, x, =b and x;, = xq + kh, k =
1,2, ...,n— 1. Thus we can write above integral as a sum (of sub-integrals) as

I:fxiaf(x) dxzf:nf(x) dxzfxxlf(x) dx + fxxzf(x) dx + -+ fxn f(x)dx (2)

Xn-1

_— )':if(X)

(¥ 1) (X5, =)

(% 3 FQ:A\

U X.=da ‘Yi l.’_, .x‘\ ¢ e X

Trapezoidal rule.

As shown in the above figure, the area under the curve in each sub-interval is approximated by
a trapezium. The integral I, which represents an area between the curve y = f(x), the X — axis
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and the ordinates at x = x; and x = x,, is obtained by adding all the trapezoidal areas in each
sub-interval.

We have trapezoidal rule as:
3

*1 h h
[ feadr= 50+ -3 © ©

Therefore,
Xn 3 3

_ 4 _h h* h h*
1= [ r@dr = 00t - Y @ 5 00 - 5 6

h R
+ot > Vno1+ ) — 7 &) 4

Where x;,_; < & < xg,fork=1,2,...,n—1.

Equation (4) is finally written as:
Xn h
I =f fdx = 5 o+ 2y1 +2yz + 4 2¥n_1 + Y) +En (5)
Xo

Where the error term E,, is given by

h3
En= -5 "GO+ y" ED+ -+ y" ()] (6

Equation (7) represents the trapezoidal rule over [x,, x,,], which is also called composite form of
the trapezoidal rule. The error given by equation (6) is called the global error. If we assume that
y"' (x) is continuous over [xy, X, | then there exists some ¢ in [x,, x,,] such that x,, = x;, + nh and

Xn — Xo
12

h3
En= -1y " (©]=- h?y"(§) = 0(h?*) (7)

3.8. Simpson’s Rules (Composite forms):

To derive composite from of Simpson’s rule, we shall divide the interval of integration [a, b] into
an even number of sub-intervals say 2N.Each of width (b — a)/2N, therefore we have x, = aq,
X1, -, Xoy =b and x; =xo+ kh,k =1,2,..,(2N — 1). thus the definite integral I can be
written as
b X2N X2 X4 X2N
I:f f(x)dx:f f(x)dx:f f(x)dx + f f)dx+ -+ f f(x)dx (8)
x=a Xo X x

0 2 X2N-2

We have Simpson’s 1/3 rule as

X2N h h
I=f f(x)dx = 5(3’0"‘ 43’1"‘3’2)"‘5()’2"‘ 4y3 + ya)
Xo
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h N (iv)
+-t 3 (Van-2 + 4Yan-1 + Yon) — 90 h> yt™ (&)

By rearranging the terms,
X2N
I =f f(x)dx
Xo
h
=3 Yo+ 41 +y3+ -+ Yon-1) + 2(y2 + Yo+ -+ Yan—2) + Yon] + Error

%)
This formula is called composite form of Simpson’s 1/3 rule. The error term E (called global

error) is

N : Xon — X .
— 55 Py () = -5 M y® © Q0

for some € in [x,, x,5]. Thus in Simpson’s 1/3 rule the global error is of 0 (h*).
Simpson’s 3/8 rule:

To derive Simpson’s 3/8 rule we divide the interval of integration into n sub-intervals, where n
is divisible by 3, and applying the integration formula to each of the integral given below

I=fx:1f(x) dx=ijnf(x) dx=.[:f(x) dx + f;éf(x) dx + -+ fxn f(x)dx (11)

Xn-3
We obtain the composite form of Simpson’s 3/8 rule as

y(a)+ 3y; + 3y, + 2y3 + 3y, + 3ys + 2y

Xn 3
I = x)dx= = h ] 12
fxo JOde= g T e 2y 43y + 3y 4y | (P

With the global error E given by

Xn — Xo

E=-
80

h*y™ () (13)

From equation (10) and equation (13) it is seen that the global error in Simpson’s 1/3 and 3/8
rules are of the same order. By considering magnitudes of the error terms we can say that
Simpson’s 1/3 rule is superior to Simpson’s 3/8 rule.

Example: 25 Find the approximate value of

s
y=f sinx dx
0

using (i) trapezoidal rule, (ii) Simpson’s 1/3 rule by dividing the range of integration into six
equal parts. Calculate the percentage error from its true value in both the cases.
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We shall divide the range of integration [0, ] into six equal parts. As h = bra _ m=0

=—= E, each
n 6 6
part of width g. We prepare a table
x 0 /6 21/6 3n/6 41/6 57/6 6m/6
=n/3 =n/2 =2r/3 =7
y = sinx 0.0 0.5 0.8660 1.0 0.8660 0.5 0.0
(i) Applying trapezoidal rule, we have h = b%a = ”T_O = %
T h
y= f sinxdx == [yo+ Y6 + 2(y1 +y2 + y3 + s + ys5)]
0
/6 T
== [0+0+2(0.5+0.8660+ 1.0+ 0.8660 + 0.5)] = D [2(3.732)]
T
=z X 3.732 = 1.9540
(ii)  Applying Simpson’s 1/3 rule,
T h
y= f sinxdx == [yo + Y6 + 4(y1 +¥3 +ys) + 2(y2 + y4)]
0
/6 T
=3 [0+ 0+4(0.54+ 1.0+ 0.5) + 2(0.8660 + 0.8660)] = 18 [4(2) + 2(1.732)]
= = X 11.464 = 2.008
- 18 . iy .
Actual value of the integration is
1
y= f sinxdx = [-cosx]§ = —[cosm —cos0] = —[-1—1] =2
0
Hence in the case of trapezoidal rule
2 —1.9540
The percentage of error = ——— X100 = 2.3 %
While in the case of Simpson’s 1/3 rule
2—2.008
The percentage of error = — X 100 = —0.04 % or 0.04 %
Example: 26 From the following data, estimate the value of y = | 15 logx dx
using Simpson’s 1/3 rule.
X 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0
y =logx | 0.0000 | 0.4055 | 0.6931 | 0.9163 | 1.0986 | 1.2528 | 1.3863 | 1.5041 | 1.6094
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Here,wehavenz0,1,2,...8,h=b;a=E= 2-05
n 8 8

Using Simpson’s 1/3 rule,
5 h
y =f logxdx == [yo+ ys +4(y1+ys +¥s +y7) +2(y2 + s+ 6)]
1
0.5
=3 [0+ 1.6094 + 4 (0.4055 + 0.9163 + 1.2528 + 1.5041) + 2 (0.6931 + 1.0986 + 1.3863)]

0.5
= [1.6094 + 4 (4.0787) + 2 (3.178)] = 4.0467

Example: 27 evaluate the integral

T odx
1:[ .
o 1+x

using (i) trapezoidal rule, (ii) Simpson’s 1/3 rule by taking h = %, Compute approximate value of

.
1

Ash =-=0.25
4
X 0 0.25 0.50 0.75 1.0

1
y = 1 0.9412 0.8000 0.6400 0.5000

1+ x2

(i) Using trapezoidal rule
bdx h
I =J;) T2 -7 Yot Yat20n+y:+y3)l
0.2

5
=" [1+ 0.5+ 2(0.9412 + 0.8+ 0.64)] = 0.125[1.5 + 2(2.312)] = 0.7828

(ii)  Using Simpson’s 1/3 rule

odx h
P= | o =3 Dot m 40 +30) +2030)

0.25
==~ [1+0.5+4(0.9412 +0.64) + 2(0.8)] = 0.7854

We know that the analytical solution of

Lodx T
f =[tan 1x]} = -
0

1+ x? 4
Therefore by equating the result of Simpson’s 1/3 rule with above result, we have
T
—=0.7854
4
m = 3.1416
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Example: 28 A missile is launched from a ground station. The acceleration during its first 80
seconds of flight, as recorded, is given in the following table:

t(s) 0 10 20 30 40 50 60 70 80
a(m/s?) 30 31.63 3334 3547 37.75 4033 4325 46.69 50.67

Compute the velocity of the missile when t = 80 s, using Simpson’s 1/3 rule.

We know that acceleration is the rate of change of velocity,

dv 80
a=— or v= f a dt
dt 0

Using Simpson’s 1/3 rule
h
v=g Yo+ ye +4(y1 + Y3+ Y5 +¥7) + 2(y2 + Ya + Y6)]
Hereh=10s

10
V=3 [30 + 50.67 +4(31.63 + 35.47 + 40.33 + 46.69) + 2(33.34 + 37.75 + 43.25)]

v =13086.1m/s
Or
v =3.0861km/s

Which is the required velocity.

X 0.0000 | 0.2618 | 0.5236 | 0.7854 | 1.0472 | 1.3090 | 1.5708

y 4.0000 | 3.3307 | 2.2857 | 1.6000 | 1.2308 | 1.0529 | 1.0000
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